HOME 首頁(yè)
SERVICE 服務(wù)產(chǎn)品
XINMEITI 新媒體代運(yùn)營(yíng)
CASE 服務(wù)案例
NEWS 熱點(diǎn)資訊
ABOUT 關(guān)于我們
CONTACT 聯(lián)系我們
創(chuàng)意嶺
讓品牌有溫度、有情感
專注品牌策劃15年

    openai中國(guó)可以用嗎(中國(guó)怎么用opensea)

    發(fā)布時(shí)間:2023-03-13 05:28:04     稿源: 創(chuàng)意嶺    閱讀: 114        問(wèn)大家

    大家好!今天讓創(chuàng)意嶺的小編來(lái)大家介紹下關(guān)于openai中國(guó)可以用嗎的問(wèn)題,以下是小編對(duì)此問(wèn)題的歸納整理,讓我們一起來(lái)看看吧。

    ChatGPT國(guó)內(nèi)免費(fèi)在線使用,一鍵生成原創(chuàng)文章、方案、文案、工作計(jì)劃、工作報(bào)告、論文、代碼、作文、做題和對(duì)話答疑等等

    只需要輸入關(guān)鍵詞,就能返回你想要的內(nèi)容,越精準(zhǔn),寫出的就越詳細(xì),有微信小程序端、在線網(wǎng)頁(yè)版、PC客戶端

    官網(wǎng):https://ai.de1919.com

    本文目錄:

    openai中國(guó)可以用嗎(中國(guó)怎么用opensea)

    一、開(kāi)放api是開(kāi)源嗎

    開(kāi)放API并不等同于開(kāi)源。開(kāi)放API是指一個(gè)軟件或平臺(tái)允許第三方開(kāi)發(fā)者使用其接口和數(shù)據(jù),以便創(chuàng)建新的應(yīng)用程序或服務(wù)。開(kāi)源則是指軟件的源代碼是公開(kāi)的,任何人都可以查看、修改和分發(fā)。雖然開(kāi)放API和開(kāi)源都可以促進(jìn)創(chuàng)新和合作,但它們是不同的概念。

    開(kāi)放API的優(yōu)點(diǎn)是可以讓不同的應(yīng)用程序之間實(shí)現(xiàn)互操作性,從而提高整個(gè)生態(tài)系統(tǒng)的價(jià)值。例如,許多社交媒體平臺(tái)都提供開(kāi)放API,使得第三方開(kāi)發(fā)者可以創(chuàng)建各種應(yīng)用程序,如社交媒體管理工具、數(shù)據(jù)分析工具等。這些應(yīng)用程序可以幫助用戶更好地管理和分析他們的社交媒體賬戶,從而提高效率和效果。

    總之,開(kāi)放API和開(kāi)源是兩個(gè)不同的概念,但它們都可以促進(jìn)創(chuàng)新和合作。開(kāi)放API可以讓不同的應(yīng)用程序之間實(shí)現(xiàn)互操作性,從而提高整個(gè)生態(tài)系統(tǒng)的價(jià)值。而開(kāi)源則可以讓開(kāi)發(fā)者更容易地查看、修改和分發(fā)軟件的源代碼,從而促進(jìn)創(chuàng)新和合作。

    二、openai能當(dāng)爬蟲(chóng)使嗎

    你好,可以的,Spinning Up是OpenAI開(kāi)源的面向初學(xué)者的深度強(qiáng)化學(xué)習(xí)資料,其中列出了105篇深度強(qiáng)化學(xué)習(xí)領(lǐng)域非常經(jīng)典的文章, 見(jiàn) Spinning Up:

    博主使用Python爬蟲(chóng)自動(dòng)爬取了所有文章,而且爬下來(lái)的文章也按照網(wǎng)頁(yè)的分類自動(dòng)分類好。

    見(jiàn)下載資源:Spinning Up Key Papers

    源碼如下:

    import os

    import time

    import urllib.request as url_re

    import requests as rq

    from bs4 import BeautifulSoup as bf

    '''Automatically download all the key papers recommended by OpenAI Spinning Up.

    See more info on: https://spinningup.openai.com/en/latest/spinningup/keypapers.html

    Dependency:

    bs4, lxml

    '''

    headers = {

    'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/92.0.4515.131 Safari/537.36'

    }

    spinningup_url = 'https://spinningup.openai.com/en/latest/spinningup/keypapers.html'

    paper_id = 1

    def download_pdf(pdf_url, pdf_path):

    """Automatically download PDF file from Internet

    Args:

    pdf_url (str): url of the PDF file to be downloaded

    pdf_path (str): save routine of the downloaded PDF file

    """

    if os.path.exists(pdf_path): return

    try:

    with url_re.urlopen(pdf_url) as url:

    pdf_data = url.read()

    with open(pdf_path, "wb") as f:

    f.write(pdf_data)

    except: # fix link at [102]

    pdf_url = r"https://is.tuebingen.mpg.de/fileadmin/user_upload/files/publications/Neural-Netw-2008-21-682_4867%5b0%5d.pdf"

    with url_re.urlopen(pdf_url) as url:

    pdf_data = url.read()

    with open(pdf_path, "wb") as f:

    f.write(pdf_data)

    time.sleep(10) # sleep 10 seconds to download next

    def download_from_bs4(papers, category_path):

    """Download papers from Spinning Up

    Args:

    papers (bs4.element.ResultSet): 'a' tags with paper link

    category_path (str): root dir of the paper to be downloaded

    """

    global paper_id

    print("Start to ownload papers from catagory {}...".format(category_path))

    for paper in papers:

    paper_link = paper['href']

    if not paper_link.endswith('.pdf'):

    if paper_link[8:13] == 'arxiv':

    # paper_link = "https://arxiv.org/abs/1811.02553"

    paper_link = paper_link[:18] + 'pdf' + paper_link[21:] + '.pdf' # arxiv link

    elif paper_link[8:18] == 'openreview': # openreview link

    # paper_link = "https://openreview.net/forum?id=ByG_3s09KX"

    paper_link = paper_link[:23] + 'pdf' + paper_link[28:]

    elif paper_link[14:18] == 'nips': # neurips link

    paper_link = "https://proceedings.neurips.cc/paper/2017/file/a1d7311f2a312426d710e1c617fcbc8c-Paper.pdf"

    else: continue

    paper_name = '[{}] '.format(paper_id) + paper.string + '.pdf'

    if ':' in paper_name:

    paper_name = paper_name.replace(':', '_')

    if '?' in paper_name:

    paper_name = paper_name.replace('?', '')

    paper_path = os.path.join(category_path, paper_name)

    download_pdf(paper_link, paper_path)

    print("Successfully downloaded {}!".format(paper_name))

    paper_id += 1

    print("Successfully downloaded all the papers from catagory {}!".format(category_path))

    def _save_html(html_url, html_path):

    """Save requested HTML files

    Args:

    html_url (str): url of the HTML page to be saved

    html_path (str): save path of HTML file

    """

    html_file = rq.get(html_url, headers=headers)

    with open(html_path, "w", encoding='utf-8') as h:

    h.write(html_file.text)

    def download_key_papers(root_dir):

    """Download all the key papers, consistent with the categories listed on the website

    Args:

    root_dir (str): save path of all the downloaded papers

    """

    # 1. Get the html of Spinning Up

    spinningup_html = rq.get(spinningup_url, headers=headers)

    # 2. Parse the html and get the main category ids

    soup = bf(spinningup_html.content, 'lxml')

    # _save_html(spinningup_url, 'spinningup.html')

    # spinningup_file = open('spinningup.html', 'r', encoding="UTF-8")

    # spinningup_handle = spinningup_file.read()

    # soup = bf(spinningup_handle, features='lxml')

    category_ids = []

    categories = soup.find(name='div', attrs={'class': 'section', 'id': 'key-papers-in-deep-rl'}).\

    find_all(name='div', attrs={'class': 'section'}, recursive=False)

    for category in categories:

    category_ids.append(category['id'])

    # 3. Get all the categories and make corresponding dirs

    category_dirs = []

    if not os.path.exitis(root_dir):

    os.makedirs(root_dir)

    for category in soup.find_all(name='h4'):

    category_name = list(category.children)[0].string

    if ':' in category_name: # replace ':' with '_' to get valid dir name

    category_name = category_name.replace(':', '_')

    category_path = os.path.join(root_dir, category_name)

    category_dirs.append(category_path)

    if not os.path.exists(category_path):

    os.makedirs(category_path)

    # 4. Start to download all the papers

    print("Start to download key papers...")

    for i in range(len(category_ids)):

    category_path = category_dirs[i]

    category_id = category_ids[i]

    content = soup.find(name='div', attrs={'class': 'section', 'id': category_id})

    inner_categories = content.find_all('div')

    if inner_categories != []:

    for category in inner_categories:

    category_id = category['id']

    inner_category = category.h4.text[:-1]

    inner_category_path = os.path.join(category_path, inner_category)

    if not os.path.exists(inner_category_path):

    os.makedirs(inner_category_path)

    content = soup.find(name='div', attrs={'class': 'section', 'id': category_id})

    papers = content.find_all(name='a',attrs={'class': 'reference external'})

    download_from_bs4(papers, inner_category_path)

    else:

    papers = content.find_all(name='a',attrs={'class': 'reference external'})

    download_from_bs4(papers, category_path)

    print("Download Complete!")

    if __name__ == "__main__":

    root_dir = "key-papers"

    download_key_papers(root_dir)

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

    28

    29

    30

    31

    32

    33

    34

    35

    36

    37

    38

    39

    40

    41

    42

    43

    44

    45

    46

    47

    48

    49

    50

    51

    52

    53

    54

    55

    56

    57

    58

    59

    60

    61

    62

    63

    64

    65

    66

    67

    68

    69

    70

    71

    72

    73

    74

    75

    76

    77

    78

    79

    80

    81

    82

    83

    84

    85

    86

    87

    88

    89

    90

    91

    92

    93

    94

    95

    96

    97

    98

    99

    100

    101

    102

    103

    104

    105

    106

    107

    108

    109

    110

    111

    112

    113

    114

    115

    116

    117

    118

    119

    120

    121

    122

    123

    124

    125

    126

    127

    128

    129

    130

    131

    132

    133

    134

    135

    136

    137

    138

    139

    140

    141

    142

    143

    144

    145

    146

    147

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

    28

    29

    30

    31

    32

    33

    34

    35

    36

    37

    38

    39

    40

    41

    42

    43

    44

    45

    46

    47

    48

    49

    50

    51

    52

    53

    54

    55

    56

    57

    58

    59

    60

    61

    62

    63

    64

    65

    66

    67

    68

    69

    70

    71

    72

    73

    74

    75

    76

    77

    78

    79

    80

    81

    82

    83

    84

    85

    86

    87

    88

    89

    90

    91

    92

    93

    94

    95

    96

    97

    98

    99

    100

    101

    102

    103

    104

    105

    106

    107

    108

    109

    110

    111

    112

    113

    114

    115

    116

    117

    118

    119

    120

    121

    122

    123

    124

    125

    126

    127

    128

    129

    130

    131

    132

    133

    134

    135

    136

    137

    138

    139

    140

    141

    142

    143

    144

    145

    146

    147

    三、微軟北京裁員了嗎

    微軟北京裁員了,1、公司的賠償是(N+2)個(gè)月的薪水。

    N是你在這個(gè)公司工作的年數(shù)。而這個(gè)薪水和你平時(shí)拿到手里面的不一樣,一般要高出一些。它的計(jì)算方式是你平時(shí)前12個(gè)月收入總和除以12。這個(gè)收入包含你每個(gè)月稅前收入總和,包括住房公積金、醫(yī)療補(bǔ)助、股票、車補(bǔ)、飯補(bǔ)甚至是手機(jī)補(bǔ)助,以及所有過(guò)去12個(gè)月的獎(jiǎng)金,年中雙薪。這樣算下來(lái),如果你的薪水過(guò)萬(wàn)的話,裁員的月薪計(jì)算要兩倍于你的單月稅后。當(dāng)然這個(gè)是公司自己設(shè)定的優(yōu)惠補(bǔ)償,一般大規(guī)模裁員都是這樣。而普通的法律上的規(guī)定也是這么算,但是有一個(gè)限額,北京市大概是1.2萬(wàn)的月薪,超過(guò)這個(gè)就只能按照1.2萬(wàn)去算。所以說(shuō)走法律規(guī)定索賠是很虧的。

    N+2的2是個(gè)很彈性的數(shù)字,有的公司是N+1。但是如果不是一個(gè)月提前通知的話,就應(yīng)該多一個(gè)月,也就是+2。不少公司福利好的也有+3+4甚至是+6,都是怕大規(guī)模裁員員工鬧事。另外一點(diǎn)這個(gè)2里面的數(shù)額,是根據(jù)你上一個(gè)月的收入總和來(lái)算的。我比較幸運(yùn)的是上個(gè)月剛發(fā)完獎(jiǎng)金,所以數(shù)額蠻大的。

    四、現(xiàn)在游戲里面可以打那個(gè)openAI了嗎

    先把你的openal32.dll刪掉,也就是c:;wiindows;system32 文件夾中的openai32.dll和游戲文件夾中的openai32.dll 。然后OpenAL 最后再裝上OpenAL 這就行了。我就是這么解決塵埃3不能玩的~

    以上就是關(guān)于openai中國(guó)可以用嗎相關(guān)問(wèn)題的回答。希望能幫到你,如有更多相關(guān)問(wèn)題,您也可以聯(lián)系我們的客服進(jìn)行咨詢,客服也會(huì)為您講解更多精彩的知識(shí)和內(nèi)容。


    推薦閱讀:

    chatopenai官網(wǎng)(chatopenai官網(wǎng)打不開(kāi))

    openai中國(guó)可以用嗎(中國(guó)怎么用opensea)

    pop客戶端下載(pop聊天軟件官網(wǎng))

    景觀設(shè)計(jì)簡(jiǎn)單美觀(景觀設(shè)計(jì)簡(jiǎn)單美觀圖)

    電子商務(wù)網(wǎng)店運(yùn)營(yíng)推廣(店鋪如何運(yùn)營(yíng)和推廣)