HOME 首頁
SERVICE 服務(wù)產(chǎn)品
XINMEITI 新媒體代運營
CASE 服務(wù)案例
NEWS 熱點資訊
ABOUT 關(guān)于我們
CONTACT 聯(lián)系我們
創(chuàng)意嶺
讓品牌有溫度、有情感
專注品牌策劃15年

    人工智能的英文是什么(人工智能的英文是什么縮寫)

    發(fā)布時間:2023-03-13 04:33:59     稿源: 創(chuàng)意嶺    閱讀: 90        問大家

    大家好!今天讓創(chuàng)意嶺的小編來大家介紹下關(guān)于人工智能的英文是什么的問題,以下是小編對此問題的歸納整理,讓我們一起來看看吧。

    ChatGPT國內(nèi)免費在線使用,一鍵生成原創(chuàng)文章、方案、文案、工作計劃、工作報告、論文、代碼、作文、做題和對話答疑等等

    只需要輸入關(guān)鍵詞,就能返回你想要的內(nèi)容,越精準,寫出的就越詳細,有微信小程序端、在線網(wǎng)頁版、PC客戶端

    官網(wǎng):https://ai.de1919.com

    本文目錄:

    人工智能的英文是什么(人工智能的英文是什么縮寫)

    一、什么是人工智能?

    人工智能(Artificial Intelligence),英文縮寫為AI。它是研究、開發(fā)用于模擬、延伸和擴展人的智能的理論、方法、技術(shù)及應(yīng)用系統(tǒng)的一門新的技術(shù)科學。

    人工智能是計算機科學的一個分支,它企圖了解智能的實質(zhì),并生產(chǎn)出一種新的能以人類智能相似的方式做出反應(yīng)的智能機器,該領(lǐng)域的研究包括機器人、語言識別、圖像識別、自然語言處理和專家系統(tǒng)等。人工智能從誕生以來,理論和技術(shù)日益成熟,應(yīng)用領(lǐng)域也不斷擴大,可以設(shè)想,未來人工智能帶來的科技產(chǎn)品,將會是人類智慧的“容器”。人工智能可以對人的意識、思維的信息過程的模擬。人工智能不是人的智能,但能像人那樣思考、也可能超過人的智能。

    人工智能是一門極富挑戰(zhàn)性的科學,從事這項工作的人必須懂得計算機知識,心理學和哲學。人工智能是包括十分廣泛的科學,它由不同的領(lǐng)域組成,如機器學習,計算機視覺等等,總的說來,人工智能研究的一個主要目標是使機器能夠勝任一些通常需要人類智能才能完成的復雜工作。但不同的時代、不同的人對這種“復雜工作”的理解是不同的。 2017年12月,人工智能入選“2017年度中國媒體十大流行語”。 2021年9月25日,為促進人工智能健康發(fā)展,《新一代人工智能倫理規(guī)范》發(fā)布。

    二、簡述什么是人工智能

    人工智能(Artificial Intelligence),英文縮寫為AI。它是研究、開發(fā)用于模擬、延伸和擴展人的智能的理論、方法、技術(shù)及應(yīng)用系統(tǒng)的一門新的技術(shù)科學。

    人工智能是計算機科學的一個分支,它企圖了解智能的實質(zhì),并生產(chǎn)出一種新的能以人類智能相似的方式做出反應(yīng)的智能機器,該領(lǐng)域的研究包括機器人、語言識別、圖像識別、自然語言處理和專家系統(tǒng)等。人工智能從誕生以來,理論和技術(shù)日益成熟,應(yīng)用領(lǐng)域也不斷擴大,可以設(shè)想,未來人工智能帶來的科技產(chǎn)品,將會是人類智慧的“容器”。人工智能可以對人的意識、思維的信息過程的模擬。人工智能不是人的智能,但能像人那樣思考、也可能超過人的智能。

    人工智能從誕生以來,理論和技術(shù)日益成熟,應(yīng)用領(lǐng)域也不斷擴大,可以設(shè)想,未來人工智能帶來的科技產(chǎn)品,將會是人類智慧的“容器”,也可能超過人的智能。

    人工智能的定義可以分為兩部分,即“ 人工”和“ 智能”?!叭斯ぁ北容^好理解,爭議性也不大。有時我們會要考慮什么是人力所能及制造的,或者人自身的智能程度有沒有高到可以創(chuàng)造人工智能的地步,等等。但總的來說,“人工系統(tǒng)”就是通常意義下的人工系統(tǒng)。

    三、什么是人工智能

    人工智能(Artificial Intelligence) ,英文縮寫為AI。它是研究、開發(fā)用于模擬、延伸和擴展人的智能的理論、方法、技術(shù)及應(yīng)用系統(tǒng)的一門新的技術(shù)科學。 人工智能是計算機科學的一個分支,它企圖了解智能的實質(zhì),并生產(chǎn)出一種新的能以人類智能相似的方式做出反應(yīng)的智能機器,該領(lǐng)域的研究包括機器人、語言識別、圖像識別、自然語言處理和專家系統(tǒng)等。

     人工智能, 英文單詞 artilect ,來源于 雨果·德·加里斯 的著作 . “人工智能”一詞最初是在1956 年Dartmouth學會上提出的。從那以后,研究者們發(fā)展了眾多理論和原理,人工智能的概念也隨之擴展。人工智能是一門極富挑戰(zhàn)性的科學,從事這項工作的人必須懂得計算機知識,心理學和哲學。人工智能是包括十分廣泛的科學,它由不同的領(lǐng)域組成,如機器學習,計算機視覺等等,總的說來,人工智能研究的一個主要目標是使機器能夠勝任一些通常需要人類智能才能完成的復雜工作。但不同的時代、不同的人對這種“復雜工作”的理解是不同的。例如繁重的科學和工程計算本來是要人腦來承擔的,現(xiàn)在計算機不但能完成這種計算, 而且能夠比人腦做得更快、更準確,因之當代人已不再把這種計算看作是“需要人類智能才能完成的復雜任務(wù)”, 可見復雜工作的定義是隨著時代的發(fā)具有人工智能的機器人

    展和技術(shù)的進步而變化的, 人工智能這門科學的具體目標也自然隨著時代的變化而發(fā)展。它一方面不斷獲得新的進展,一方面又轉(zhuǎn)向更有意義、更加困難的目標。目前能夠用來研究人工智能的主要物質(zhì)手段以及能夠?qū)崿F(xiàn)人工智能技術(shù)的機器就是計算機, 人工智能的發(fā)展歷史是和計算機科學技術(shù)的發(fā)展史聯(lián)系在一起的。除了計算機科學以外, 人工智能還涉及信息論、控制論、自動化、仿生學、生物學、心理學、數(shù)理邏輯、語言學、醫(yī)學和哲學等多門學科。人工智能學科研究的主要內(nèi)容包括:知識表示、自動推理和搜索方法、機器學習和知識獲取、知識處理系統(tǒng)、自然語言理解、計算機視覺、智能機器人、自動程序設(shè)計等方面。  實際應(yīng)用 機器視覺:指紋識別,人臉識別,視網(wǎng)膜識別,虹膜識別,掌紋識別,專家系統(tǒng),智能搜索,定理證明,博弈,自動程序設(shè)計,還有航天應(yīng)用等。 學科范疇 人工智能是一門邊沿學科,屬于自然科學和社會科學的交叉。 涉及學科 哲學和認知科學,數(shù)學,神經(jīng)生理學,心理學,計算機科學,信息論,控制論,不定性論,仿生學, 研究范疇 自然語言處理,知識表現(xiàn),智能搜索,推理,規(guī)劃,機器學習,知識獲取,組合調(diào)度問題,感知問題,模式識別,邏輯程序設(shè)計,軟計算,不精確和不確定的管理,人工生命,神經(jīng)網(wǎng)絡(luò),復雜系統(tǒng),遺傳算法 人類思維方式 應(yīng)用領(lǐng)域 智能控制,專家系統(tǒng),機器人學,語言和圖像理解,遺傳編程 機器人工廠 安全問題  目前人工智能還在研究中,但有學者認為讓計算機擁有智商是很危險的,它可能會反抗人類。這種隱患也在多部電影中發(fā)生過。

    人工智能的兩種實現(xiàn)方法

    人工智能在計算機上實現(xiàn)時有2種不同的方式。一種是采用傳統(tǒng)的編程技術(shù),使系統(tǒng)呈現(xiàn)智能的效果,而不考慮所用方法是否與人或動物機體所用的方法相同。這種方法叫工程學方法(Engineering approach),它已在一些領(lǐng)域內(nèi)作出了成果,如文字識別、電腦下棋等。另一種是模擬法(Modeling approach),它不僅要看效果,還要求實現(xiàn)方法也和人類或生物機體所用的方法相同或相類似。本書介紹的遺傳算法(Generic Algorithm, 簡稱GA)和人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network,簡稱ANN)均屬后一類型。遺傳算法模擬人類或生物的遺傳-進化機制,人工神經(jīng)網(wǎng)絡(luò)則是模擬人類或動物大腦中神經(jīng)細胞的活動方式。為了得到相同智能效果,兩種方式通常都可使用。采用前一種方法,需要人工詳細規(guī)定程序邏輯,如果游戲簡單,還是方便的。如果游戲復雜,角色數(shù)量和活動空間增加,相應(yīng)的邏輯就會很復雜(按指數(shù)式增長),人工編程就非常繁瑣,容易出錯。而一旦出錯,就必須修改原程序,重新編譯、調(diào)試,最后為用戶提供一個新的版本或提供一個新補丁, 非常麻煩。采用后一種方法時,編程者要為每一角色設(shè)計一個智能系統(tǒng)(一個模塊)來進行控制,這個智能系統(tǒng)(模塊)開始什么也不懂,就像初生嬰兒那樣,但它能夠?qū)W習,能漸漸地適應(yīng)環(huán)境,應(yīng)付各種復雜情況。這種系統(tǒng)開始也常犯錯誤,但它能吸取教訓,下一次運行時就可能改正,至少不會永遠錯下去,用不到發(fā)布新版本或打補丁。利用這種方法來實現(xiàn)人工智能,要求編程者具有生物學的思考方法,入門難度大一點。但一旦入了門,就可得到廣泛應(yīng)用。由于這種方法編程時無須對角色的活動規(guī)律做詳細規(guī)定,應(yīng)用于復雜問題,通常會比前一種方法更省力。

    定義

    人工智能的定義可以分為兩部分,即“人工”和“智能”?!叭斯ぁ北容^好理解,爭議性也不大。有時我們會要考慮什么是人力所能及制造的,或者人自身的智能程度有沒有高到可以創(chuàng)造人工智能的地步,等等。但總的來說,“人工系統(tǒng)”就是通常意義下的人工系統(tǒng)。 關(guān)于什么是“智能”,就問題多多了。這涉及到其它諸如意識(consciousness)、自我(self)、思維(mind)(包括無意識的思維(unconscious_mind)等等問題。人唯一了解的智能是人本身的智能,這是普遍認同的觀點。但是我們對我們自身智能的理解都非常有限,對構(gòu)成人的智能的必要元素也了解有限,所以就很難定義什么是“人工”制造的“智能”了。因此人工智能的研究往往涉及對人的智能本身的研究。其它關(guān)于動物或其它人造系統(tǒng)的智能也普遍被認為是人工智能相關(guān)的研究課題。 人工智能目前在計算機領(lǐng)域內(nèi),得到了愈加廣泛的重視。并在機器人,經(jīng)濟政治決策,控制系統(tǒng),仿真系統(tǒng)中得到應(yīng)用。 著名的美國斯坦福大學人工智能研究中心尼爾遜教授對人工智能下了這樣一個定義:“人工智能是關(guān)于知識的學科――怎樣表示知識以及怎樣獲得知識并使用知識的科學?!倍硪粋€美國麻省理工學院的溫斯頓教授認為:“人工智能就是研究如何使計算機去做過去只有人才能做的智能工作?!边@些說法反映了人工智能學科的基本思想和基本內(nèi)容。即人工智能是研究人類智能活動的規(guī)律,構(gòu)造具有一定智能的人工系統(tǒng),研究如何讓計算機去完成以往需要人的智力才能勝任的工作,也就是研究如何應(yīng)用計算機的軟硬件來模擬人類某些智能行為的基本理論、方法和技術(shù)。 人工智能(Artificial Intelligence,簡稱AI)是計算機學科的一個分支,二十世紀七十年代以來被稱為世界三大尖端技術(shù)之一(空間技術(shù)、能源技術(shù)、人工智能)。也被認為是二十一世紀(基因工程、納米科學、人工智能)三大尖端技術(shù)之一。這是因為近三十年來它獲得了迅速的發(fā)展,在很多學科領(lǐng)域都獲得了廣泛應(yīng)用,并取得了豐碩的成果,人工智能已逐步成為一個獨立的分支,無論在理論和實踐上都已自成一個系統(tǒng)。 人工智能是研究使計算機來模擬人的某些思維過程和智能行為(如學習、推理、思考、規(guī)劃等)的學科,主要包括計算機實現(xiàn)智能的原理、制造類似于人腦智能的計算機,使計算機能實現(xiàn)更高層次的應(yīng)用。人工智能將涉及到計算機科學、心理學、哲學和語言學等學科??梢哉f幾乎是自然科學和社會科學的所有學科,其范圍已遠遠超出了計算機科學的范疇,人工智能與思維科學的關(guān)系是實踐和理論的關(guān)系,人工智能是處于思維科學的技術(shù)應(yīng)用層次,是它的一個應(yīng)用分支。從思維觀點看,人工智能不僅限于邏輯思維,要考慮形象思維、靈感思維才能促進人工智能的突破性的發(fā)展,數(shù)學常被認為是多種學科的基礎(chǔ)科學,數(shù)學也進入語言、思維領(lǐng)域,人工智能學科也必須借用數(shù)學工具,數(shù)學不僅在標準邏輯、模糊數(shù)學等范圍發(fā)揮作用,數(shù)學進入人工智能學科,它們將互相促進而更快地發(fā)展。

    編輯本段簡史

    人工智能的傳說可以追溯到古埃及,但隨著1941年以來電子計算機的發(fā)展,技術(shù)已最終可以創(chuàng)造出機器智能,“人工智能”(Artificial Intelligence)一詞最初是在1956年Dartmouth學會上提出的,從那以后,研究者們發(fā)展了眾多理論和原理,人工智能的概念也隨之擴展,在它還不長的歷史中,人工智能的發(fā)展比預(yù)想的要慢,但一直在前進,從40年前出現(xiàn)到現(xiàn)在,已經(jīng)出現(xiàn)了許多AI程序,并且它們也影響到了其它 技術(shù)的發(fā)展。

    計算機時代

    1941年的一項發(fā)明使信息存儲和處理的各個方面都發(fā)生了革命.這項同時在美國和德國出現(xiàn)的 發(fā)明就是電子計算機.第一臺計算機要占用幾間裝空調(diào)的大房間,對程序員來說是場惡夢:僅僅為運行一 個程序就要設(shè)置成千的線路.1949年改進后的能存儲程序的計算機使得輸入程序變得簡單些,而且計算機 理論的發(fā)展產(chǎn)生了計算機科學,并最終促使了人工智能的出現(xiàn).計算機這個用電子方式處理數(shù)據(jù)的發(fā)明, 為人工智能的可能實現(xiàn)提供了一種媒介.

    AI的開端

    雖然計算機為AI提供了必要的技術(shù)基礎(chǔ),但直到50年代早期人們才注意到人類智能與機器之間 的聯(lián)系. Norbert Wiener是最早研究反饋理論的美國人之一.最熟悉的反饋控制的例子是自動調(diào)溫器.它 將收集到的房間溫度與希望的溫度比較,并做出反應(yīng)將加熱器開大或關(guān)小,從而控制環(huán)境溫度.這項對反饋 回路的研究重要性在于: Wiener從理論上指出,所有的智能活動都是反饋機制的結(jié)果.而反饋機制是有可 能用機器模擬的.這項發(fā)現(xiàn)對早期AI的發(fā)展影響很大. 1955年末,Newell和Simon做了一個名為"邏輯專家"(Logic Theorist)的程序.這個程序被許多人 認為是第一個AI程序.它將每個問題都表示成一個樹形模型,然后選擇最可能得到正確結(jié)論的那一枝來求解 問題."邏輯專家"對公眾和AI研究領(lǐng)域產(chǎn)生的影響使它成為AI發(fā)展中一個重要的里程碑.1956年,被認為是 人工智能之父的John McCarthy組織了一次學會,將許多對機器智能感興趣的專家學者聚集在一起進行了一 個月的討論.他請他們到 Vermont參加 " Dartmouth人工智能夏季研究會".從那時起,這個領(lǐng)域被命名為 "人工智能".雖然 Dartmouth學會不是非常成功,但它確實集中了AI的創(chuàng)立者們,并為以后的AI研究奠定了基礎(chǔ). Dartmouth會議后的7年中,AI研究開始快速發(fā)展.雖然這個領(lǐng)域還沒明確定義,會議中的一些思想 已被重新考慮和使用了. Carnegie Mellon大學和MIT開始組建AI研究中心.研究面臨新的挑戰(zhàn): 下一步需 要建立能夠更有效解決問題的系統(tǒng),例如在"邏輯專家"中減少搜索;還有就是建立可以自我學習的系統(tǒng). 1957年一個新程序,"通用解題機"(GPS)的第一個版本進行了測試.這個程序是由制作"邏輯專家" 的同一個組開發(fā)的.GPS擴展了Wiener的反饋原理,可以解決很多常識問題.兩年以后,IBM成立了一個AI研 究組.Herbert Gelerneter花3年時間制作了一個解幾何定理的程序. 當越來越多的程序涌現(xiàn)時,McCarthy正忙于一個AI史上的突破.1958年McCarthy宣布了他的新成 果: LISP語言. LISP到今天還在用."LISP"的意思是"表處理"(LISt Processing),它很快就為大多數(shù)AI開發(fā)者采納. 1963年MIT從美國政府得到一筆220萬美元的資助,用于研究機器輔助識別.這筆資助來自國防部 高級研究計劃署(ARPA),已保證美國在技術(shù)進步上領(lǐng)先于蘇聯(lián).這個計劃吸引了來自全世界的計算機科學家, 加快了AI研究的發(fā)展步伐.

    大量的程序

    以后幾年出現(xiàn)了大量程序.其中一個著名的叫"SHRDLU"."SHRDLU"是"微型世界"項目的一部分,包括 在微型世界(例如只有有限數(shù)量的幾何形體)中的研究與編程.在MIT由Marvin Minsky領(lǐng)導的研究人員發(fā)現(xiàn), 面對小規(guī)模的對象,計算機程序可以解決空間和邏輯問題.其它如在60年代末出現(xiàn)的"STUDENT"可相關(guān)書籍

    以解決代數(shù) 問題,"SIR"可以理解簡單的英語句子.這些程序的結(jié)果對處理語言理解和邏輯有所幫助. 70年代另一個進展是專家系統(tǒng).專家系統(tǒng)可以預(yù)測在一定條件下某種解的概率.由于當時計算機已 有巨大容量,專家系統(tǒng)有可能從數(shù)據(jù)中得出規(guī)律.專家系統(tǒng)的市場應(yīng)用很廣.十年間,專家系統(tǒng)被用于股市預(yù) 測,幫助醫(yī)生診斷疾病,以及指示礦工確定礦藏位置等.這一切都因為專家系統(tǒng)存儲規(guī)律和信息的能力而成為可能. 70年代許多新方法被用于AI開發(fā),著名的如Minsky的構(gòu)造理論.另外David Marr提出了機器視覺方 面的新理論,例如,如何通過一副圖像的陰影,形狀,顏色,邊界和紋理等基本信息辨別圖像.通過分析這些信 息,可以推斷出圖像可能是什么.同時期另一項成果是PROLOGE語言,于1972年提出. 80年代期間,AI前進更為迅速,并更多地進入商業(yè)領(lǐng)域.1986年,美國AI相關(guān)軟硬件銷售高達4.25億 美元.專家系統(tǒng)因其效用尤受需求.象數(shù)字電氣公司這樣的公司用XCON專家系統(tǒng)為VAX大型機編程.杜邦,通用 汽車公司和波音公司也大量依賴專家系統(tǒng).為滿足計算機專家的需要,一些生產(chǎn)專家系統(tǒng)輔助制作軟件的公 司,如Teknowledge和Intellicorp成立了。為了查找和改正現(xiàn)有專家系統(tǒng)中的錯誤,又有另外一些專家系統(tǒng)被設(shè)計出來.

    從實驗室到日常生活

    人們開始感受到計算機和人工智能技術(shù)的影響.計算機技術(shù)不再只屬于實驗室中的一小群研究人員. 個人電腦和眾多技術(shù)雜志使計算機技術(shù)展現(xiàn)在人們面前.有了象美國人工智能協(xié)會這樣的基金會.因為AI開發(fā) 的需要,還出現(xiàn)了一陣研究人員進入私人公司的熱潮。150多所像DEC(它雇了700多員工從事AI研究)這樣的公司共花了10億美元在內(nèi)部的AI開發(fā)組上. 其它一些AI領(lǐng)域也在80年代進入市場.其中一項就是機器視覺. Minsky和Marr的成果現(xiàn)在用到了生產(chǎn)線上的相機和計算機中,進行質(zhì)量控制.盡管還很簡陋,這些系統(tǒng)已能夠通過黑白區(qū)別分辨出物件形狀的不同.到1985年美國有一百多個公司生產(chǎn)機器視覺系統(tǒng),銷售額共達8千萬美元. 但80年代對AI工業(yè)來說也不全是好年景.86-87年對AI系統(tǒng)的需求下降,業(yè)界損失了近5億美元.象 Teknowledge和Intellicorp兩家共損失超過6百萬美元,大約占利潤的三分之一巨大的損失迫使許多研究領(lǐng) 導者削減經(jīng)費.另一個另人失望的是國防部高級研究計劃署支持的所謂"智能卡車".這個項目目的是研制一種能完成許多戰(zhàn)地任務(wù)的機器人。由于項目缺陷和成功無望,Pentagon停止了項目的經(jīng)費. 盡管經(jīng)歷了這些受挫的事件,AI仍在慢慢恢復發(fā)展.新的技術(shù)在日本被開發(fā)出來,如在美國首創(chuàng)的模糊邏輯,它可以從不確定的人工智能機器人

    條件作出決策;還有神經(jīng)網(wǎng)絡(luò),被視為實現(xiàn)人工智能的可能途徑.總之,80年代AI被引入了市場,并顯示出實用價值.可以確信,它將是通向21世紀之匙. 人工智能技術(shù)接受檢驗 在"沙漠風暴"行動中軍方的智能設(shè)備經(jīng)受了戰(zhàn)爭的檢驗.人工智能技術(shù)被用于導彈系統(tǒng)和預(yù)警顯示以 及其它先進武器.AI技術(shù)也進入了家庭.智能電腦的增加吸引了公眾興趣;一些面向蘋果機和IBM兼容機的應(yīng)用 軟件例如語音和文字識別已可買到;使用模糊邏輯,AI技術(shù)簡化了攝像設(shè)備.對人工智能相關(guān)技術(shù)更大的需求促 使新的進步不斷出現(xiàn).人工智能已經(jīng)并且將繼續(xù)不可避免地改變我們的生活.

    四、人工智能的英文縮寫是?

    人工智能(Artificial Intelligence) ,英文縮寫為AI。

    以上就是關(guān)于人工智能的英文是什么相關(guān)問題的回答。希望能幫到你,如有更多相關(guān)問題,您也可以聯(lián)系我們的客服進行咨詢,客服也會為您講解更多精彩的知識和內(nèi)容。


    推薦閱讀:

    人工智能專業(yè)工資如何(人工智能專業(yè)工資如何算)

    人工補單平臺(專業(yè)在線補單平臺)

    機器人屬不屬于人工智能(機器人屬不屬于人工智能實例)

    萬科景觀設(shè)計師工資(萬科景觀設(shè)計師工資待遇)

    優(yōu)秀景觀設(shè)計院名單(優(yōu)秀景觀設(shè)計院名單公布)